Задача (1) де для довільного і являються лінійними обмеженими операторами, які діють в Z



Скачати 14.89 Kb.
Дата конвертації26.12.2017
Розмір14.89 Kb.
ТипЗадача

Функція Гріна

(на прикладі крайової задачі)

Нехай в банаховому просторі Z визначена крайова задача

(1)

де

для довільного і являються лінійними обмеженими операторами, які діють в Z,

ряди в правих частинах (1) збігаються у рівномірної операторної топології при , , , ,

, , сильно неперервні при ,

,

оператор , де - оператор Коші однорідного рівняння



, (2)

є - оператор [1] з



Лема. Якщо власна функція крайової задачі

, , (3)

відносно операторів і , утворює узагальнений Жорданов ланцюг приєднаних функцій , скінченої довжини , то для достатньо малих крайова задача (1) має єдиний розв’язок.



Теорема. Якщо виконуються умови леми, то для крайової задачі (1) існує функція Гріна і для неї має місто лорановський розклад

,

де


де


- власна функція крайової задачі, спряженої до задачі (3); - узагальнений жорданів ланцюг, відносно операторів ,спряжений до ланцюга



- узагальнено обернений до ;



- розв’язки задач Коші



- розв’язки задач Коші







Поділіться з Вашими друзьями:


База даних захищена авторським правом ©wishenko.org 2017
звернутися до адміністрації

    Головна сторінка