Основи квантової біофізики



Скачати 143.77 Kb.
Дата конвертації26.12.2017
Розмір143.77 Kb.

Основи квантової біофізики

Елементи квантової механіки

Хвильові властивості частинок. Гіпотеза де Бройля.

Фізика атомів, молекул, атомних ядер і елементарних частинок вивчається в квантовій механіці. Об’єкти мікросвіту, що вивчаються квантовою механікою мають лінійні розміри порядку . Якщо частинки рухаються з швидкостями , де - швидкість світла в вакуумі, то використовується нерелятивістська квантова механіка, при - релятивістська квантова механіка.

В основі квантової механіки лежать наступні уявлення:


  1. В1900 р. М.Планк, вивчаючи випромінювання чорного тіла, прийшов до висновку про те, що при випромінюванні енергія віддається тілом в чітко визначеній кількості, яку він назвав квантом енергії.

  2. В 1905 р. А.Ейнштейн, вивчаючи фотоефект, ввів в фізику уявлення про те, що електромагнітне поле має дискретну структуру і що енергія світлових хвиль сконцентрована в просторі певними порціями - квантами. Так склалось нове уявлення про частинки світлової хвилі - фотони, які випромінюються і поглинаються речовиною як єдине ціле.

  3. В 1913р. Н. Бор, використовуючи розроблену Розенфордом планетарну модель атома, ввів уявлення про енергетичні рівні атома. Квантові умови руху електрона і на цій основі пояснив закономірності лінійчатих спектрів.

  4. В 1923 р. А Комптон, вивчаючи розсіювання рентгенівських променів на атомах речовини, встановив, що воно підлягає законам пружного удару, а значить фотон володіє імпульсом, певної величини. Таким чином було встановлено, що крім хвильових, фотон має також і корпускулярні властивості. Досліди Комптона показали, що довжина хвилі розсіяного випромінювання більша за довжину хвилі падаючого випромінювання, причому різниця залежить від кута розсіювання:



(7.1)

Основу квантової механіки складає ідея про те, що хвильово-корпускулярний дуалізм, встановлений для світла, має універсальний характер. Вперше ця ідея була висловлена французьким фізиком Луї де Бройлем в 1924р. Всі частинки які мають певний імпульс , володіють хвильовими властивостями, а їх рух супроводжується деяким хвильовим процесом.

Формула для імпульсу фотона:


,

(7.2)

Була використана для інших частинок масою m, які рухаються зі швидкістю

,




звідки

(7.3)

де – стала Планка (Дж с).

Хвилі, про які йде мова, називаються хвилями де Бройля.

Рис. 7.1


Формула де Бройля експериментально підтверджується дослідами по розсіюванню електронів і других частинок на кристалах і по проходженню частинок через речовини. Ознакою хвильового процесу в цих дослідах є дифракційна картина розподілу електронів (частинок).
Дифракція електронів. Поняття про електричний мікроскоп

Формулу де Бройля експериментально підтвердили в дослідах К.Девісон і Л.Джермер (1927р.), які спостерігали розсіювання електронів монокристалом нікелю. Згодом Г.Томпсон і С.Тартаковський спостерігали дифракцію електронів на металічній фользі(товщиною см) (полікристалічне тіло). На рис. 7.1 зображено фотографію дифракційної картини пучка електронів, що пройшов через золоту фольгу. Користуючись такими фотографіями Томпсон перевірив формулу де Бройля і підтвердив її справедливість.

Хвильові властивості електрона можна використовувати не тільки для дифракційного структурного аналізу, але і для отримання збільшених зображень предметів. Електронний мікроскоп і його елементи по своєму призначенню аналогічні оптичному мікроскопу. Роздільна відстань оптичного мікроскопа:


,

(7.4)

де - довжина хвилі;

- показник заломлення;

- апертурний кут.

Для електронного мікроскопа:





(7.5)

де - прискорюючи напруга, і роздільна здатність



(7.6)

Як бачимо роздільна відстань залежить від прискорюючої напруги і можна добитися, щоб вона була значно менша ніж у оптичного мікроскопа ( в сотні раз менше).

Хвильові властивості не проявляються у макроскопічних тіл. Довжини хвиль де Бройля для таких тіл настільки малі, що виявити їх неможливо.
Хвильова функція та її фізичний зміст. Співвідношення невизначеностей

Так як з мікрочастинкою співставляють хвильовий процес, який відповідає її рухові, то стан частинки в квантовій механіці описується хвильовою функцією, залежною від координати і часу: .

Інтенсивність хвиль де Бройля визначається величиною квадрата модуля хвильової функції .

З дослідів по дифракції електронів випливає, що інтенсивність хвиль у певній точці простору визначає число електронів, що потрапили в цю точку за 1 с. Це стало основою для своєрідного імовірнісного тлумачення хвиль де Бройля. Ймовірність того, що частинка знаходиться в елементі об’єму , пропорційна і елементу об’єму








Величина є густиною ймовірності

і задає ймовірність перебування частинки в даній точці простору.





(7.7)

В квантовій механіці існують обмеження в можливостях одночасного визначення координати частинки і величини її імпульсу. Ці обмеження пов’язані з хвильово – корпускулярним дуалізмом мікрочастинок. Гейзенберг показав, що чим точніше визначена одна з двох змінних величин, які визначають стан мікрочастинки, тим з меншою точністю може бути визначена друга з них і навпаки. Добуток похибок, з якими визначаються ці величини, не може бути менше сталої Планка . Наприклад, якщо координата х частинки визначена з похибкою , то імпульс частинки визначається з похибкою , більший, або рівний сталій Планка:



(7.8)

Аналогічне співвідношення є для при визначенні енергії і часу , на протязі якого частинка має цю енергію:

.

(7.9)

В квантовій механіці дію на об’єкти в процесі вимірювання не можна вважати малою або несуттєвою – стан об’єкту при вимірюванні змінюється. Наприклад, для визначення положення електрона його необхідно “освітити” світлом можливо більш високої частоти. В результаті співудару електрона з фотоном імпульс електрона зміниться на величину:.

Рівняння Шредінгера та його розв’язок для атома водню. Квантові числа.

Після відкриття в 1927р. Гейзенбергом співвідношення невизначеностей постало питання створення квантової теорії руху частинок, оскільки виявилися принципова неможливість описати рух частинок за допомогою поняття траєкторії. Стан мікрочастинок описується - функцією, яка визначається рівнянням Шредінгера, яке відіграє в квантовій механіці таку ж роль, як і рівняння Ньютона в класичній механіці. Образно кажучи, Шредінгер перевів уявлення класичної механіки на мову квантової теорії. За допомогою хвильового рівняння Шредінгера можна описати еволюцію - функції, якщо вона відома в якийсь момент часу.

Якщо - функція не залежить від часу вона задовольняє стаціонарному рівнянню Шредінгера, яке для одномірного випадку має вигляд:




(7.10)

де – маса частинки, - її повна і потенціальна енергія.

Функції , які задовільняють рівняння Шредінгера при заданому вигляді , називаються власними функціями. Вони існують лише при певних значеннях енергії. Сукупність власних значень енергії утворює енергетичний спектр частинки. Знаходження власних значень і власних функцій складає основну задачу квантової механіки.

Опис стану атомів і молекул з допомогою рівняння Шредінгера є досить складною задачею. Найпростіше вона розв’язується для одного електрона в полі ядра. Проте і в цьому випадку розв’язок виходить за межі нашого курсу, тому ми обмежимося якісним розглядом питання.

При центральній симетрії поля, створеного ядром, задачу зручно розв’язувати у сферичних координатах , і . Розв’язок рівняння Шредінгера знаходять у вигляді добутку трьох функцій, кожна з яких залежить від однієї змінної





(7.11)

Загальний розвиток є дискретним, тобто кожна з функцій має набір (спектр) розв’язків, кожному з яких відповідає певне квантове число.

Перше з них – головне квантове число... .Воно визначає рівні енергії електрона по закону





(7.12)

Цей вираз є розв’язком рівняння Шредінгера і повністю співпадає з відповідною формулою теорії Бора.

Друге квантове число – орбітальне , яке при даному n може приймати значення. Це число характеризує орбітальний момент імпульса електрона відносно ядра:





(7.13)

Третє квантове число – магнітне m, яке при даному l приймає значення 0, всього значень.

Це число визначає проекції орбітального момента імпульса електрона на довільно вибраний напрям Z :





(7.14)

Четверте квантове число – спінове. Воно може приймати тільки два значення і характеризує можливі значення проекції спіна електрона :



(7.15)

Стан електрона в атомі з відомими n і позначають таким чином 1S, 2S, 3P, 3S і т. д. Тут цифра вказує значення головного квантового числа, а буква – орбітальне квантове число: символам … відповідають значення l=0, 1. 2, 3..і т. д.

Число станів з даними n і буде . Щоб знайти загальне число станів з однаковим головним квантовим числом n, просумуємо по всі можливим значенням :





(7.16)

Таким чином, першому рівню енергії атома водню (n=1) відповідають два стани електрона, другому – 8, третьому –18 і т. д.

Стаціонарний квантовий стан електрона в атомі характеризується повним набором чотирьох квантових чисел: головного, орбітального, магнітного m і спінового. Кожне з них характеризує квантування: енергії , моменту імпульсу, його проекції на напрям зовнішнього магнітного поля і проекції спіна.

Для елементарних частинок, що мають спін рівний (електрони, протони, нейтрони та ін.) справедливий принцип Паулі: в будь – якій системі частинок із спіном не може бути більше однієї частинки, що знаходиться в стаціонарному стані, який визначається повним набором чотирьох квантових чисел.

Якщо є число електронів в атомі, які знаходяться у стані, що визначається даним набором чотирьох квантових чисел, то або 1.

Найбільше число електронів в атомі, які знаходяться в станах, що визначаються набором трьох квантових чисел

Найбільше число електронів в атомі, які знаходяться в станах, що визначаються набором двох квантових чисел.

Найбільше число електронів в атомі, які знаходяться в станах, що визначаються значенням головного квантового числа.
Елементи квантової оптики

Особливості вимірювання і поглинання енергії атомами і молекулами

Енергетичні стани атома і молекули схематично зображаються у вигляді рівнів (рис.7.2). Найнижчий рівень енергії – основний – відповідає основному стану (стаціонарному). При квантових переходах атоми і молекули стрибкоподібно переходять з одного стаціонарного стану в другий, з одного енергетичного рівня на другий.

Зміна стану атома зв’язана з енергетичними переходами електронів. В молекулах енергія змінюється також і за рахунок зміни коливань атомів та переходів між обертовими рівнями.




Рис. 7.2.

При переході з більш високих енергетичних рівнів на нижчі атом або молекула віддає енергію, при зворотних переходах поглинає. Розрізняють два типи квантових переходів:

а) без випромінювання або поглинання електромагнітної енергії. Такий перехід відбувається при зіткненнях атомів і молекул та інших частинок. Розрізняють непружне зіткнення, при якому змінюється внутрішній стан атома і відбувається перехід без випромінювання енергії, і пружне – із зміною кінетичної енергії атома або молекули, але із збереженням внутрішнього стану.

б) випромінюванням або поглинанням фотона. Енергія фотона дорівнює різниці енергій початкового і кінцевого стаціонарних станів атома або молекули





(7.18)

Формула (1) виражає закон збереження енергії.

В залежності від причин, які зумовлюють квантовий перехід з випромінюванням фотона, розрізняють два види випромінювання:

Спонтанне випромінювання, при якому внаслідок внутрішніх причин збуджена частинка самостійно переходить на нижчий енергетичний рівень.

Вимушене, або індуковане випромінювання, яке виникає при взаємодії фотона із збудженою частинкою, якщо енергія фотона дорівнює різниці енергій рівнів частинки.

В результаті вимушеного переходу в одному напрямі випромінюються два фотона: один первинний, вимушуючий, а другий – вторинний, індукований.

Енергія, яка випромінюється атомами або молекулами формує спектр випромінювання, а поглинута енергія – спектр поглинання.

Енергетичні рівні більшості атомів і молекул досить складні. Структура рівнів, а отже і спектрів, залежить не тільки від будови атомів і молекул, але і від зовнішніх умов.

Електромагнітна взаємодія електронів приводить до тонкого розщеплення енергетичних рівнів. Вплив магнітних моментів ядер викликає надтонке розщеплення енергетичних рівнів. Зовнішнє електричне і магнітне поле також викликає розщеплення енергетичних рівнів (явища Штарка і Зеємана).

Спектри є джерелом різноманітної інформації. Перш за все по виду спектра можна ідентифікувати атоми і молекули, що входить в завдання якісного спектрального аналізу.

По інтенсивності спектральних ліній визначають кількість випромінюючих (поглинаючих) атомів – кількісний спектральний аналіз.

Інтенсивність спектральних ліній визначається числом однакових переходів, які відбуваються в секунду, і тому залежить від кількості випромінюючих (поглинаючих) атомів і ймовірності відповідного переходу. При цьому порівняно легко визначають домішки в концентраціях і склад зразків дуже малої маси – десятки мікрограм.

Якщо враховувати, що по спектру речовини можна зробити висновок про її стан, температуру, тиск і т.п., то треба високо оцінити спектральний аналіз як метод дослідження.

В залежності від енергії (частоти) фотона, що випромінюється або поглинається атомом (молекулою), розрізняють такі види спектроскопії: радіо, інфрачервона, видимого випромінювання, ультрафіолетова і рентгенівська. По типу речовини (джерела спектру) розрізняють, атомні та молекулярні спектри і спектри кристалів.
Явище люмінесценції

Крім теплового випромінювання тіл при температурі, є ще один вид випромінювання тіл, надлишкового над тепловим. Воно називається люмінесценцією і має тривалість понад с, що значно перевищує період ( c ) світлових хвиль.

Люмінесценцію можна спричинити бомбардуванням тіл електронами, пусканням крізь речовину електричного струму або дією електричного поля, освітленням видимим світлом, рентгенівськими і гамма-променями, а також деякими хімічними реакціями в речовині. Залежно від способів збудження люмінесцентного світіння розрізняють, відповідно, катодолюмінесценцію, електролюмінесценцію, фотолюмінесценцію, рентгенолюмінесценцію, хемілюмінесценцію.

Люмінесценцію з часом затухання порядку с називають звичайно флуоресценцією. Такий час затухання характерний для рідин і газів. Люмінесценція, яка зберігається тривалий час після припинення дії збудника світіння, називають фосфоресценцією. Таке тривале висвічування мають тверді тіла здатні люмінесценціювати.

Розглянемо явище фотолюмінесценції, яке збуджується електромагнітним випромінюванням видимого або ультрафіолетового діапазону. Фотолюмінесценцію вивчав ще Д.Стокс, який встановив, що фотолюмінесценціююча речовина випромінює як правило, світло, що має більшу довжину хвилі, ніж те випромінювання, яке спричиняє люмінесценцію.

Це правило Стокса обґрунтоване в квантовій оптиці.

Справді, фотон світла, збуджує фотолюмінісценцію, має енергію , яка за законом збереження енергії, частково витрачається на створення кванта люмінесцентного випромінювання з енергією , і на різні неоптичні процеси:




(7.19)

де - енергія, витрачена на різні процеси, крім фотолюмінесценції. Звичайно і , тобто , що відповідає правилу Стокса.

У деяких випадках фотолюмінесцентне випромінювання має довжину хвилі меншу за довжину хвилі збуджуючого світла (так зване антистоксове випромінювання). Це явище пояснюється тим, що до енергії кванта збуджуючого випромінювання додається енергія теплового руху атомів (молекул або іонів) люмінесціюючої речовини:





(7.20)

де - коефіцієнт, що залежить від природи люмінесціюючої речовини;

- стала Больцмана;

- абсолютна температура.

Антистоксове випромінювання проявляється дедалі чіткіше з підвищенням температури.

На явищі люмінесценції ґрунтується люмінесцентний аналіз, принцип якого такий, Речовина або сама по собі, або після відповідної дії дає характерне люмінесцентне свічення. За характером цього свічення можна, визначаючи інтенсивність лінії у спектрі, визначити не лише якісний, а й кількісний вміст досліджуваної речовини. Люмінесцентний аналіз дозволяє виявити наявність мізерних домішок порядку г в 1 г досліджуваної величини. Його успішно застосовують в біології і медицині. Ряд біологічно функціональних молекул, наприклад молекули мембранних білків, володіє флуоресценцією. Параметри флуоресценції чутливі до структури оточення флуоресціюючої молекули, тому по люмінесценції можна вивчати хімічні перетворення і міжмолекулярну взаємодію.

Явище люмінесценції дає змогу створити джерела світла, які мають значні переваги перед лампами розжарювання, що випромінюють у діапазоні видимої ділянки спектра лише 3-5% витрачуваної енергії. Для виготовлення ламп з випромінюванням близьким за складом до денного світла, застосовують ртутні лампи низького тиску (0,01-1,0 мм. рт. ст.) у формі трубок, внутрішню поверхню яких покривають сумішшю люмінесціюючих речовин. Поглинаючи ультрафіолетове випромінювання ртутної пари, ці речовини дають люмінісцентне випромінювання у видимій області, близьке за складом до денного світла. Люмінесцентні лампи не потребують нагрівання, дають випромінювання у вузькій спектральній області і дуже економічні.



Люмінесцентний аналіз мікроскопічних об’єктів проводять з допомогою спеціальних люмінесцентних мікроскопів, в яких замість звичайних джерел світла, використовуються ртутні лампи високого (150-400 мм. рт. ст.) і надвисокого (вище атмосферного) тиску і які мають два світлофільтри. Один з них, розташований перед конденсором, виділяє ту частину спектра джерела світла, яка спричиняє люмінесценцію об’єкта. Другий, розташований між об’єктивом і окуляром, виділяє світло люмінесценції

Люмінесценція, що спричинюється екзотермічними (з виділенням тепла) хімічними процесами в речовині називається хемілюмінесценцією. Окремим випадком хемілюмінесценції є біохемілюмінесценція – свідчення, що супроводжує хімічні реакції біологічних об’єктів ( свідчення гнилих дерев, світлячків та ін.). Доведено, що біохемілюмінесценція виникає при рекомбінації перекисних вільних радикалів ліпідів: збуджений продукт продукт + квант біохемілюмінесценції. Інтенсивність біохемілюмінесценції значно зростає при внесенні досліджувані системи солей двохвалентного заліза. Наприклад, якщо внести солі двохвалентного заліза в плазму крові при апендициті і холециститі, то свічення в першому випадку значно слабшає. Отже, біохемілюмінесценція може використовуватися як діагностичний метод. При опроміненні сиворотки крові ультрафіолетом, біохемілюмінесценція зростає для здорових людей і спадає для онкологічних хворих.

Поділіться з Вашими друзьями:


База даних захищена авторським правом ©wishenko.org 2017
звернутися до адміністрації

    Головна сторінка