3. Класичне і геометричне означення ймовірності



Сторінка8/8
Дата конвертації23.10.2018
Розмір0.5 Mb.
1   2   3   4   5   6   7   8

45.Загальна схема перевірки статистичних гіпотез. Перевірка достовірності гіпотез про частку ознаки генеральної сукупності, про рівність частот ознаки двох вибірок, про значення генеральної середньої, про рівність двох генеральних середніх і дисперсій


Перевірка правельності нульової гіпотези про нормальний закон розподілу ознаки генеральної сукупності Для перевірки правильності Н0 задається так званий рівень значущості ?.

?це мала ймовірність, якою наперед задаються. Вона може набувати значення ? = 0,005; 0,01; 0,001. В основу перевірки Н0 покладено принцип , тобто ймовірність того, що статистичний критерій потрапляє в критичну область , дорівнює малій імовірності ?. Якщо ж виявиться, що а ця подія малоймовірна і все ж відбулася, то немає підстав приймати нульову гіпотезу. Пропонується такий алгоритм перевірки правильності Н0:

1. Сформулювати Н0 й одночасно альтернативну гіпотезу Н?.

2. Вибрати статистичний критерій, який відповідав би сформульованій нульовій гіпотезі.

3. Залежно від змісту нульової та альтернативної гіпотез будується правобічна, лівобічна або двобічна критична область, а саме: нехай , тоді, якщо

, то вибирається правобічна критична область, якщо

, то вибирається лівобічна критична область і коли

, то вибирається двобічна критична область.

4. Для побудови критичної області (лівобічної, правобічної чи двобічної) необхідно знайти критичні точки. За вибраним статистичним критерієм та рівнем значущості ? знаходяться критичні точки.

5. За результатами вибірки обчислюється спостережуване значення критерію .

6. Відхиляють чи приймають нульову гіпотезу на підставі таких міркувань: у разі, коли , а це є малоймовірною випадковою подією, і, незважаючи на це, вона відбулася, то в цьому разі Н0 відхиляється: для лівобічної критичної області ; для правобічної критичної області

для двобічної критичної області

або , ураховуючи ту обставину, що критичні точки і симетрич­но розташовані відносно нуля.


  1. 46.Непараметричні статистичні гіпотези. Критерії згоди.Перевірка гіпотез про нормальнийірівномірнийрозподіли


Перевірка правельності нульової гіпотези про нормальний закон розподілу ознаки генеральної сукупності Для перевірки правильності Н0 задається так званий рівень значущості ?.

?це мала ймовірність, якою наперед задаються. Вона може набувати значення ? = 0,005; 0,01; 0,001. В основу перевірки Н0 покладено принцип , тобто ймовірність того, що статистичний критерій потрапляє в критичну область , дорівнює малій імовірності ?. Якщо ж виявиться, що а ця подія малоймовірна і все ж відбулася, то немає підстав приймати нульову гіпотезу. Пропонується такий алгоритм перевірки правильності Н0:

1. Сформулювати Н0 й одночасно альтернативну гіпотезу Н?.

2. Вибрати статистичний критерій, який відповідав би сформульованій нульовій гіпотезі.

3. Залежно від змісту нульової та альтернативної гіпотез будується правобічна, лівобічна або двобічна критична область, а саме: нехай , тоді, якщо

, то вибирається правобічна критична область, якщо

, то вибирається лівобічна критична область і коли

, то вибирається двобічна критична область.

4. Для побудови критичної області (лівобічної, правобічної чи двобічної) необхідно знайти критичні точки. За вибраним статистичним критерієм та рівнем значущості ? знаходяться критичні точки.

5. За результатами вибірки обчислюється спостережуване значення критерію .

6. Відхиляють чи приймають нульову гіпотезу на підставі таких міркувань: у разі, коли , а це є малоймовірною випадковою подією, і, незважаючи на це, вона відбулася, то в цьому разі Н0 відхиляється: для лівобічної критичної області ; для правобічної критичної області

для двобічної критичної області

або , ураховуючи ту обставину, що критичні точки і симетрич­но розташовані відносно нуля. Критерій узгодженості Пірсона. Критерій узгодженості Пірсона є випадковою величиною, що має розподіл , який визначається за формулою і має k = q – m – 1 ступенів свободи, де q — число часткових інтервалів інтервального статистичного розподілу вибірки; m — число параметрів, якими визначається закон розподілу ймовірностей генеральної сукупності згідно з нульовою гіпотезою. Так, наприклад, для закону Пуассона, який характеризується одним параметром ?, m = 1, для нормального закону m = 2, оскільки цей закон визначається двома параметрами i ?. Якщо (усі емпіричні частоти збігаються з теоретичними), то , у противному разі . Визначивши при заданому рівні значущості ? і числу ступенів свободи критичну точку , за таблицею (додаток 8) будується правобічна критична область. Якщо виявиться, що спостережуване значення критерію , то Н0 про закон розподілу ознаки генеральної сукупності відхиляється. У противному разі Н0 приймається.


  1. 47.Двовимірний статистичний розподіл вибірки і його числові характеристики. Кореляційна таблиця.


Перелік варіант У=уі, Х=хі та відповідних їм частотам утворюють двовимірний статистичний розподіл вибірки, що реалізована з ген. сукупності, ел. цієї вибірки притаманні кількісні ознаки Х і У. У табл. Ф-мі має вигляд:




X=xj




У=уi

x1



xm

nyi

y1

n11



n1m

ny1











yk

nk1



nkm

nyk

nxj

nx1



nx3




Загальні числові характеристики ознаки Х:



σ=√D


Для величини У відповідно.

Кореляційний момент, вибірковий коефіцієнт кореляції‌



Якщо К = 0, то кореляційного зв’язку немає, якщо К≠0, то цей зв'язок існує.



|rB|≤1, -1≤rB ≤1


  1. 48.Умовні статистичні розподіли вибірки,їх числові характеристики.


Умовним статистичним розподілом ознаки У при фіксованому значені ознаки Х=хі називають перелік варіант ознаки У та відповідних їм частот, узятих при фіксованому значенні Х. У/Х=хj

Y=yj

y1

yk




nij

n1j

nkj

Тут

Умовні емпіричні моменти:







  1. 49.Статистична і кореляційна залежність. Функції та лінії регресії


Показником, що вимірює стохастичний зв’язок між змінними, є коефіцієнт кореляції, який свідчить з певною мірою ймовірності, наскільки зв’язок між змінними близький до строгої лінійної залежності.

За наявності кореляційного зв’язку між змінними необхідно виявити його форму функціональної залежності (лінійна чи нелінійна), а саме:;



;

Наведені можливі залежності між змінними X і Y називають функціями регресії. Форму зв’язку між змінними X і Y можна встановити, застосовуючи кореляційні поля, які зображені на рисунках

Для двовимірного статистичного розподілу вибірки ознак (Х, Y) поняття статистичної залежності між ознаками Х та Y має таке визначення:

статистичною залежністю Х від Y називають таку, за якої при зміні значень ознаки Y = yi змінюється умовний статистичний розподіл ознаки Х, статистичною залежністю ознаки Y від Х називають таку, за якої зі зміною значень ознаки X = xi змінюється умовний статистичний розподіл ознаки Y.

Між ознаками Х та Y може існувати статистична залежність і за відсутності кореляційної. Але коли існує кореляційна залежність між ознаками Х та Y, то обов’язково між ними існуватиме і статистична залежність

  1. 50.Парна лінійна регресія. Вибірковий коефіцієнт кореляції та його властивості


Ураховуючи вплив на значення Y збурювальних випадкових факторів, лінійне рівняння зв’язку X і Y можна подати в такому вигляді:

,

де , є невідомі параметри регресії, є випадковою змінною, що характеризує відхилення y від гіпотетичної теоретичної регресії.

Отже, в рівнянні (485) значення «y» подається у вигляді суми двох частин: систематичної і випадкової . Параметри , є невідомими величинами, а є випадковою величиною, що має нормальний закон розподілу з числовими характеристиками: , . При цьому елементи послідовності є некорельованими

У результаті статистичних спостережень дослідник дістає характеристики для незалежної змінної х і відповідні значення залежної змінної у.



Вибірковий коефіцієнт кореляції

Рівняння лінійної парної регресії:



або

,

де і називають коефіцієнтом регресії.Для обчислення необхідно знайти





;

;

Як бачимо, коефіцієнт кореляції близький за своїм значенням до одиниці, що свідчить про те, що залежність між Х та Y є практично лінійною




  1. 51.Надійний інтервал для лінійної регресії


Ураховуючи те, що і є випадковими величинами, то і лінійна функція регресії буде випадковою. Позначимо через значення ознаки Y, обчислимо за формулою

.

Тоді






.

Звідси дістали:



або

.Випадкова величина

має t-розподіл із ступенями свободи. Ураховуючи можна побудувати довірчий інтервал для лінійної парної функції регресії із заданою надійністю γ, а саме:



.

випливає



  1. 52.Лінійна регресія для двовимірного статистичного розподілу


Ураховуючи вплив на значення Y збурювальних випадкових факторів, лінійне рівняння зв’язку X і Y можна подати в такому вигляді:

,

де , є невідомі параметри регресії, є випадковою змінною, що характеризує відхилення y від гіпотетичної теоретичної регресії.

Отже, в рівнянні (485) значення «y» подається у вигляді суми двох частин: систематичної і випадкової . Параметри , є невідомими величинами, а є випадковою величиною, що має нормальний закон розподілу з числовими характеристиками: , . При цьому елементи послідовності є некорельованими

У результаті статистичних спостережень дослідник дістає характеристики для незалежної змінної х і відповідні значення залежної змінної


  1. 53.Множинна лінійна регресія


На практиці здебільшого залежна змінна пов’язана з впливом не одного, а кількох аргументів.
У цьому разі регресію називають множинною. При цьому якщо аргументи в функції регресії в першій степені, то множинна регресія називається лінійною, у противному разі — множинною нелінійною регресією.

Довірчий інтервал для множинної лінійної регресії

Матриця Х містить m лінійно незалежних векторів-стовпців, а це означає, що ранг її дорівнюватиме m і визначник Отже, матриця має обернену.

Дисперсії статистичних оцінок визначають з допомогою кореляційної матриці для вектора

Коефіцієнт множинної регресіїТісноту між ознаками Y та X, де , вимірюють з допомогою коефіцієнта множинної кореляції R, що є узагальненням парного коефіцієнта кореляції rij і обчислюється за формулою

.

Чим ближче значення R до ±1, тим краще вибрано функцію регресії



Нормування коефіцієнтів регресії

Множинна лінійна регресія дає змогу порівняти вплив на досліджуваний процес різних чинників. У загальному випадку змінні репрезентують чинники, що мають різні одиниці виміру (кілограми, гривні, метри тощо). Отже, для того щоб порівняти і з’ясувати відносну вагомість кожного з чинників, використовують так звані нормовані коефіцієнти регресії, які визначають за формулою



де — коефіцієнт регресії після нормування; — виправлене середнє квадратичне відхилення змінної — виправлене середнє квадратичне відхилення ознаки Y.


  1. 54.Поняття про нелінійну регресію. Кореляційні відношення та їх властивості.


Якщо в рівняння множинної регресії змінні входять як , то регресія називається нелінійною.

У загальному випадку нелінійна регресія записується в такому вигляді:



де параметри є сталими невідомими величинами, які підлягають статистичним оцінкам, а — випадкова величина, яка має нормальний закон розподілу з числовими характеристиками і при цьому випадкові величини між собою не корельовані. Реалізуючи вибірку обсягом n, згідно з (563), дістанемо систему нелінійних рівнянь виду:












Поділіться з Вашими друзьями:
1   2   3   4   5   6   7   8


База даних захищена авторським правом ©wishenko.org 2017
звернутися до адміністрації

    Головна сторінка