3. Класичне і геометричне означення ймовірності



Сторінка4/8
Дата конвертації23.10.2018
Розмір0.5 Mb.
1   2   3   4   5   6   7   8

30.Багатовимірність випадкової величини


.Сукупність випадкових величин які розглядаються спільно, називається системою випадкових величин.Для системи випадкових величин числові характеристики задаються вектором математичних сподівань і кореляційною матрицею:

Якщо елементи цієї матриці поділимо на добуток , дістанемо матрицю, складену з коефіцієнтів кореляції:





  1. 31.Функції від випадкових величин. Розподіл ?2, Студента, Фішера


Розподіл Розглядаємо послідовність попарно незалежних випадкових величин, які розподілені нормально з нульовими математичними сподіваннями і одиничними дисперсіями.

Якщо то ця сума має розподіл з ступенями волі. Щільність розподілу Числові характеристики розподілу: До виразу щільності розподілу входить гамма-функція

Графік щільності розподілу зображено на рис. 3.3.

Для розподілу складено таблиці виду для кількості ступенів волі від 1 до 30. У таблицях для заданих значень імовірностей (здебільшого 0,9; 0,8; 0,7; 0,5; 0,3; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001) вказано значення для відповідної кількості ступенів волі. Якщо кількість ступенів волі більша від 30, то розподіл мало відрізняється від нормального з відповідними математичним сподіванням і дисперсією.

M(X)=n. D(X)=2n.
Розподіл Стьюдента. Розподіл Стьюдента з n cтупенями волі має випадкова величина де Х — нормально розподілена величина з нульовим математичним сподіванням і одиничною дисперсією, а . Випадкова величина не залежить від Х і має розподіл з n ступенями волі. Щільність розподілу Графік щільності розподілу Стьюдента за зовнішнім виглядом нагадує нормальні криві. Але вони значно повільніше спадають до осі t, якщо особливо за малих значень n

Складено таблиці розподілу Стьюдента,




h

x1 x2

x2 x3

x3 x4



xk–1 xk

ni

n1

n2

n3



Nk

Wi

W1

W2

W3



Wk

здебільшого виду для кількості ступенів волі від 1 до 20. Якщо кількість ступенів волі більша, то можна застосовувати нормальний закон розподілу з нульовим математичним сподіванням і одиничною дисперсією.

M(Z)=0. .


 Розподіл Фішера. Якщо випадкові величини незалежні і мають розподіл відповідно з ступенями волі, то випадкова величина має розподіл Фішера з ступенями волі. Щільність цього розподілу подається формулою:

Щільність розподілу Фішера має графік, зображений на

Для розподілу Фішера складено таблиці, в яких для відповідної кількості ступенів волі для ймовірностей наведено значення


  1. 32. Функція і щільністьрозподілудвовимірноївипадкової величини, їх властивості

  2. 33.Умовні закони розподілу і умовні математичні сподівання двовимірних в.в.



  3. Поділіться з Вашими друзьями:
1   2   3   4   5   6   7   8


База даних захищена авторським правом ©wishenko.org 2017
звернутися до адміністрації

    Головна сторінка